QUATERNIONIC BOTT–CHERN COHOMOLOGY AND EXISTENCE OF HKT METRICS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balanced HKT metrics and strong HKT metrics on hypercomplex manifolds

A manifold (M, I, J,K) is called hypercomplex if I, J,K are complex structures satisfying quaternionic relations. A quaternionic Hermitian hypercomplex manifold is called HKT (hyperkähler with torsion) if the (2,0)-form Ω associated with the corresponding Sp(n)-structure satisfies ∂Ω = 0. A Hermitian metric ω on a complex manifold is called balanced if d∗ω = 0. We show that balanced HKT metrics...

متن کامل

New Strong Hkt Manifolds Arising from Quaternionic Representations

We give a procedure for constructing an 8n-dimensional HKT Lie algebra starting from a 4n-dimensional one by using a quaternionic representation of the latter. The strong (respectively weak) condition is preserved by our construction. This allows to find new compact examples of strong HKT manifolds.

متن کامل

Quaternionic Monge-Ampère equation and Calabi problem for HKT-manifolds

A quaternionic version of the Calabi problem on the MongeAmpère equation is introduced, namely a quaternionic MongeAmpère equation on a compact hypercomplex manifold with an HKT-metric. The equation is non-linear elliptic of second order. For a hypercomplex manifold with holonomy in SL(n,H), uniqueness (up to a constant) of a solution is proven, as well as the zero order a priori estimate. The ...

متن کامل

Cohomology of a Quaternionic Complex

We investigate the cohomology of a certain elliptic complex defined on a compact quaternionic-Kähler manifold with negative scalar curvature. We show that this particular complex is exact, with the possible exception of one term. Let (M,g) be an oriented 4k-dimensional compact quaternionic-Kähler manifold having negative scalar curvature. In [2] we proved a rigidity theorem for such manifolds w...

متن کامل

Linear perturbations of quaternionic metrics

We extend the twistor methods developed in our earlier work on linear deformations of hyperkähler manifolds [1] to the case of quaternionic-Kähler manifolds. Via Swann’s construction, deformations of a 4d-dimensional quaternionic-Kähler manifold M are in one-to-one correspondence with deformations of its 4d+ 4-dimensional hyperkähler cone S. The latter can be encoded in variations of the comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Quarterly Journal of Mathematics

سال: 2017

ISSN: 0033-5606,1464-3847

DOI: 10.1093/qmath/haw060